

JavaScript is disabled on your browser.

	Overview
	Package
	Class
	Tree
	Deprecated
	Index
	Help

	Prev Class
	Next Class

	Frames
	No Frames

	All Classes

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

com.snowtide.pdf

Class PDFTextStream

	java.lang.Object
	
	java.io.Reader
	
	com.snowtide.pdf.PDFTextStream

	
	All Implemented Interfaces:
	java.io.Closeable, java.lang.AutoCloseable, java.lang.Readable

public class PDFTextStream
extends java.io.Reader
implements java.io.Closeable

 PDFTextStream gives your Java, .NET, and Python applications the ability to:

 	Extract text and metadata from PDF documents (including metadata like XMP data, bookmarks, and annotations)
	Extract and update interactive AcroForm data
	Merge PDF documents

 Instances of this class can either access a PDF file directly, or process equivalent data
 delivered via a java.io.InputStream or java.nio.ByteBuffer.

 Certain aspects of PDFTextStream's operation may be customized by providing a suitably-configured
 PDFTextStreamConfig object to a PDFTextStream constructor, or by changing the default PDFTextStreamConfig
 instance via the PDFTextStreamConfig.setDefaultConfig(PDFTextStreamConfig) function, or by
 setting a PDFTextStream instance's configuration settings after initialization via the setConfig(PDFTextStreamConfig)
 function.

 Level of Support

 PDFTextStream supports the core of the PDF file specification up to and
 including version 1.7 (corresponding to Acrobat 8), including 40/128-bit document
 encryption methods. PDFTextStream also supports a variety of PDF format variants: formats that
 deviate from the official PDF document specification significantly, yet still render as expected in Adobe Reader.

 Text Extraction

 Using PDFTextStream to extract text from PDF documents is very simple; first, create an instance of PDFTextStream
 with a reference to a PDF file (alternatively, you can provide an java.io.InputStream or a java.nio.ByteBuffer):

 PDFTextStream stream = new PDFTextStream(pdfFile);

 Once a PDFTextStream instance is available, it can be used just like a java.io.Reader:

 BufferedReader bufPDF = new BufferedReader(stream);
 String firstLine = bufPDF.readLine();
 // ... etc. ...

 That's convenient, but only using PDFTextStream's java.io.Reader interface can be limiting; for instance, there's no way
 to extract text from individual pages of a PDF that way. A more flexible extraction mechanism is available by using
 OutputHandler implementations to control the extraction of text. The "standard" implementation is
 OutputTarget (which is what PDFTextStream uses to format PDF text delivered through its java.io.Reader
 interface):

 Page page = stream.getPage(0);
 StringBuffer sb = new StringBuffer(1024);
 OutputTarget tgt = new OutputTarget(sb);
 page.pipe(tgt);

 String firstPageText = sb.toString();

 OutputTarget can also direct extracted text to a file on disk via a java.io.Writer,
 instead of to a StringBuffer:

 Writer textOutputFile = new OutputStreamWriter(new BufferedOutputStream(new FileOutputStream(new File("C:\pdfExtract.txt"))));
 OutputTarget tgt = new OutputTarget(textOutputFile);
 page.pipe(tgt);

 OutputTarget is only one of the OutputHandler implementations provided with PDFTextStream. Another commonly-used
 implementation is VisualOutputTarget. In contrast to OutputTarget, which separates columns and other
 blocks of text to enable semantically-sensitive applications (such as search indexing), VisualOutputTarget
 retains the visual appearance and layout of each page of extracted text as much as possible. It is used just like
 OutputTarget:

 StringBuffer sb = new StringBuffer(1024);
 VisualOutputTarget tgt = new VisualOutputTarget(sb);
 page.pipe(tgt);

 String firstPageText = sb.toString();

 Source code for some sample OutputHandler implementations are included with PDFTextStream, including
 GoogleHTMLOutputHandler and XMLOutputTarget. Building a custom OutputHandler implementation
 is sometimes the simplest and most straightforward way to handle PDF text extracts appropriately for one's
 application.

 Form Data Extraction and Updating

 PDFTextStream supports the extraction of interactive AcroForm data, as well as
 updating the values of most field types in such forms.

 Form Data Extraction

 The AcroForm instance for a particular PDF file may be retrieved using the getFormData()
 function. From there, all of the AcroFormFields available in that PDF file may be retrieved.
 PDFTextStream also includes XMLFormExport, which will generate an XML document containing
 all interactive form data associated with a PDF document. (The source code for XMLFormExport is also included
 in the PDFTextStream distribution for your reference.

 Updating Interactive Forms

 The persistent values of form fields accessible through the
 AcroForm may also be updated. Doing so is usually as simple as calling
 AcroFormField.setValue(String) on the fields to be changed, using the desired new values as arguments.
 Some field types also provide simpler or more comprehensive setters appropriate for that field type; for example,
 the AcroCheckboxField provides the AcroCheckboxField.setValue(boolean) function, which enables
 a checkbox's value to be set without having to determine what String should be used to represent the
 "checked" checkbox state.

 After updating the values of form fields as appropriate, either the AcroForm.writeUpdatedDocument(File) or
 AcroForm.writeUpdatedDocument(OutputStream) may be used to write out an updated version of the
 PDF document that contains the new form field values.

 Metadata Access

 PDFTextStream provides access to all document-level metadata. This metadata includes
 creation and modification dates, author information, what application was used to generate a PDF document,
 and other items of potential interest. There are two potential sources of this metadata within a PDF document,
 and PDFTextStream provides a mechanism for retrieving metadata from each source.

 Name / Value Pairs

 Most PDF documents contain a mapping of simple name/value pair metadata attributes,
 which are stored in the document '/Info' object. PDFTextStream provides a set of methods for accessing these metadata attributes:

 	getAttribute(String) for retrieving the value associated with a named attribute
	getAttributeKeys() for retrieving a java.util.Set view of the
 names of the attributes defined in a particular PDF document
	getAttributeMap() for retrieving a java.util.Map view of
 all of the metadata name / value mappings.

 These methods may be called at any time before a PDFTextStream instance is closed. For
 more details about retrieval of metadata attribute values, please refer to the documentation for
 getAttribute(String).

 XMP Metadata

 Adobe has developed an XML-based architecture for delivering richer, more
 flexible metadata within a PDF document, called XMP (Extensible Metadata Platform). Many PDF documents
 include XMP streams, which can be accessed via the getXmlMetadata()
 method. This XML data typically is just another view of the metadata stored in the 'classic' document /Info
 object, but in some PDF workflows, the XMP data is used to carry richer metadata than can be stored
 in the 'classic' way. More information about XMP can be found at
 Adobe's website.

 Bookmark Data Extraction

 PDFTextStream supports the retrieval of bookmarks supplied by some PDF documents (sometimes referred to as
 outline data). Bookmarks are represented in PDF documents as a simple tree structure, which PDFTextStream's
 Bookmark implementation mirrors. See the getBookmarks() function and the Bookmark
 class for details.

 Annotation

 PDFTextStream supports the retrieval of PDF annotations; these include textual annotations
 (notes, comments, etc), URL's (used by PDF documents to implement hyperlinks), and others. Several functions
 in PDFTextStream support the retrieval of annotations (getAllAnnotations(), getAllAnnotations(List),
 and getAnnotations(int)); see the documentation for Annotation for details on how each type
 of annotation is implemented.

 Character Sets and Encodings

 Text in a PDF document can be encoded in a variety of ways. PDFTextStream
 supports all single-byte and double-byte Unicode character sets; it is therefore able to extract
 all text written using western languages (English, Spanish, French, Icelandic, Dutch, Swedish, German, etc) as well
 as Chinese, Japanese, and Korean (including vertical writing modes).
 PDFTextStream does not currently support right-to-left writing modes, so text in languages such as
 Arabic and Hebew is not extracted as one would expect.

 Logging

 PDFTextStream is designed to integrate smoothly into its environment; logging is commonly a large part of that.
 To that end, PDFTextStream's LoggingRegistry provides a central hook for customizing which logging
 framework PDFTextStream links to, and how. See the documentation for LoggingRegistry for details.
 Utilities

 	MergeUtil provides PDF document merging functionality
	KodakPrintData enables the extraction of Kodak print job data (%KDK commands) from PDF documents
 that contain such content.

 Errors

 Many PDFTextStream functions and its constructors pass IOExceptions along as they are thrown
 due to underlying system I/O errors (permissions issues, etc.). FaultyPDFExceptions
 may also be thrown in circumstances where a parsing or file structure problem is detected by PDFTextStream,
 and it is suspected that the PDF file in question is corrupt, invalid, or otherwise not readable.
 Any errors encountered while decrypting PDF content will be signaled by a EncryptedPDFException.

	Version:
	©2004-2012 Snowtide Informatics Systems, Inc.

	

	

Field Summary

Fields 	Modifier and Type	Field and Description
	static java.lang.String	ATTR_AUTHOR
Document attribute key used to retrieve a String indicating who created a PDF document.

	static java.lang.String	ATTR_CREATION_DATE
Document attribute key used to retrieve a String indicating the date and time that a PDF document
 was created.

	static java.lang.String	ATTR_CREATOR
Document attribute key used to retrieve a String indicating the name of the application that
 created the original document from which the PDF was generated.

	static java.lang.String	ATTR_KEYWORDS
Document attribute key used to retrieve a String containing keywords associated with a PDF document.

	static java.lang.String	ATTR_MOD_DATE
Document attribute key used to retrieve a String indicating the date and time that a PDF document
 was last modified.

	static java.lang.String	ATTR_PRODUCER
Document attribute key used to retrieve a String indicating the name of the application that
 generated a PDF document.

	static java.lang.String	ATTR_SUBJECT
Document attribute key used to retrieve a String indicating the subject of a PDF document.

	static java.lang.String	ATTR_TITLE
Document attribute key used to retrieve a String indicating the title of a PDF document.

	static java.lang.String	ATTR_TRAPPED
Document attribute key used to retrieve an indicator as to whether a PDF document includes trapping
 information (trapping is a method for correcting printing errors in high-quality printing environments).

	static java.lang.String	ATTR_USES_GRAPH_FONTS

 Some PDF files use fonts that are image-based -- instead of their encodings mapping
 character codes to standard Unicode characters, they map character codes to images
 of characters.

	

Fields inherited from class java.io.Reader

lock

	

Constructor Summary

Constructors 	Constructor and Description
	PDFTextStream(java.nio.ByteBuffer pdfData,
 java.lang.String pdfName)
Creates a new PDFTextStream that reads PDF content from the given ByteBuffer.

	PDFTextStream(java.nio.ByteBuffer pdfData,
 java.lang.String pdfName,
 byte[] userPasswd)
Creates a new PDFTextStream that reads PDF content from the given ByteBuffer.

	PDFTextStream(java.nio.ByteBuffer pdfData,
 java.lang.String pdfName,
 byte[] userPasswd,
 PDFTextStreamConfig config)
Creates a new PDFTextStream that reads PDF content from the given ByteBuffer.

	PDFTextStream(java.io.File pdfFile)
Creates a new PDFTextStream that reads PDF content from the given File.

	PDFTextStream(java.io.File pdfFile,
 byte[] userPasswd)
Creates a new PDFTextStream that reads PDF content from the given File.

	PDFTextStream(java.io.File pdfFile,
 byte[] userPasswd,
 PDFTextStreamConfig config)
Creates a new PDFTextStream that reads PDF content from the given File.

	PDFTextStream(java.io.InputStream is,
 java.lang.String pdfName)
Creates a new PDFTextStream that reads PDF content from the given InputStream.

	PDFTextStream(java.io.InputStream is,
 java.lang.String pdfName,
 byte[] userPasswd)
Creates a new PDFTextStream that reads PDF content from the given InputStream.

	PDFTextStream(java.io.InputStream is,
 java.lang.String pdfName,
 byte[] userPasswd,
 PDFTextStreamConfig config)
Creates a new PDFTextStream that reads PDF content from the given InputStream.

	PDFTextStream(java.lang.String pdfFilePath)
Creates a new PDFTextStream that reads PDF content from a file located at the given path.

	PDFTextStream(java.lang.String pdfFilePath,
 byte[] userPasswd)
Creates a new PDFTextStream that reads PDF content from the given file at the given path.

	PDFTextStream(java.lang.String pdfFilePath,
 byte[] userPasswd,
 PDFTextStreamConfig config)
Creates a new PDFTextStream that reads PDF content from the file located at the given path.

	

Method Summary

Methods 	Modifier and Type	Method and Description
	void	close()
	void	finalize()
	java.util.List	getAllAnnotations()
Returns a list containing all of the annotations contained in the current PDF document.

	int	getAllAnnotations(java.util.List tgt)
Adds to the given List all of the annotations contained in the current PDF document.

	java.util.List	getAnnotations(int page)
Returns a List of all annotations found on the page indicated by the given page number;
 each object will be an instance of a class that implements the Annotation interface.

	java.lang.Object	getAttribute(java.lang.String attrName)
This method is used to access all of the document-level metadata attributes that
 are set in a PDF document.

	java.util.Set	getAttributeKeys()
Returns a Set containing the keys of all available document attributes.

	java.util.Map	getAttributeMap()
Returns a Map containing a copy of all keys and values of all available document attributes.

	Bookmark	getBookmarks()
If the current PDF document contains a bookmark tree, this function will return its root node.

	PDFTextStreamConfig	getConfig()
Returns the PDFTextStreamConfig instance that this PDFTextStream instance is using
 to govern its operation.

	EncryptionInfo	getEncryptionInfo()
Returns an EncryptionInfo object, which provides access to some of the parameters used for the current
 PDF document's encryption.

	Form	getFormData()
Loads the form data contained in the current document, and returns a Form object
 that represents that data.

	java.lang.String	getName()
Returns the name of the PDF that this stream is configured to read; this will be either the name of the PDF
 file that is being read, or the pdfName String that was provided if this instance was created
 with an InputStream constructor.

	Page	getPage(int n)
Reads and returns a single page from the current PDF document.

	int	getPageCnt()
Returns the number of pages in the PDF document.

	java.io.File	getPDFFile()
Returns a reference to the file that this PDFTextStream instance is processing.

	long	getPdfFileSize()
Returns the size of the PDF file being read, in bytes.

	PDFVersion	getPDFVersion()

 Retrieves the PDFVersion instance that corresponds with the version of the PDF file
 specification to which current PDF file adheres.

	byte[]	getXmlMetadata()

 Returns the XML metadata available for the current PDF document.

	static boolean	isLicensed()
Returns true if PDFTextStream has loaded and verified a non-evaluation license file that has not yet expired.

	static boolean	loadLicense(java.lang.String licenseFilePath)
Loads and attempts to verify a PDFTextStream license file at the given path.

	static boolean	loadLicense(java.net.URL licenseLocation)
Loads and attempts to verify a PDFTextStream license file at the given URL.

	static void	main(java.lang.String[] args)
Main-method to allow extraction of text from a PDF file from the command line.

	void	pipe(OutputHandler handler)

 Extracts all available text from this PDFTextStream instance, sending all PDF text events
 to the given OutputHandler.

	int	read()
	int	read(char[] buf)
	int	read(char[] buf,
 int off,
 int len)
	void	setConfig(PDFTextStreamConfig config)
Sets the PDFTextStreamConfig instance that this PDFTextStream instance will
 use in various contexts to govern its operation.

	

Methods inherited from class java.io.Reader

mark, markSupported, read, ready, reset, skip

	

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Field Detail

	
ATTR_TITLE

public static final java.lang.String ATTR_TITLE

Document attribute key used to retrieve a String indicating the title of a PDF document.

	See Also:
	Constant Field Values

	
ATTR_AUTHOR

public static final java.lang.String ATTR_AUTHOR

Document attribute key used to retrieve a String indicating who created a PDF document.

	See Also:
	Constant Field Values

	
ATTR_SUBJECT

public static final java.lang.String ATTR_SUBJECT

Document attribute key used to retrieve a String indicating the subject of a PDF document.

	See Also:
	Constant Field Values

	
ATTR_KEYWORDS

public static final java.lang.String ATTR_KEYWORDS

Document attribute key used to retrieve a String containing keywords associated with a PDF document.

	See Also:
	Constant Field Values

	
ATTR_CREATOR

public static final java.lang.String ATTR_CREATOR

Document attribute key used to retrieve a String indicating the name of the application that
 created the original document from which the PDF was generated.

	See Also:
	Constant Field Values

	
ATTR_PRODUCER

public static final java.lang.String ATTR_PRODUCER

Document attribute key used to retrieve a String indicating the name of the application that
 generated a PDF document.

	See Also:
	Constant Field Values

	
ATTR_CREATION_DATE

public static final java.lang.String ATTR_CREATION_DATE

Document attribute key used to retrieve a String indicating the date and time that a PDF document
 was created. This String may be parsed into a java.util.Date object by passing it to the
 parseDateString(String) method.

	See Also:
	Constant Field Values

	
ATTR_MOD_DATE

public static final java.lang.String ATTR_MOD_DATE

Document attribute key used to retrieve a String indicating the date and time that a PDF document
 was last modified. This String may be parsed into a java.util.Date object by passing it to the
 parseDateString(String) method.

	See Also:
	Constant Field Values

	
ATTR_TRAPPED

public static final java.lang.String ATTR_TRAPPED

Document attribute key used to retrieve an indicator as to whether a PDF document includes trapping
 information (trapping is a method for correcting printing errors in high-quality printing environments). This key
 maps to a String, the valid values of which are 'False' and 'Unknown'.

	See Also:
	Constant Field Values

	
ATTR_USES_GRAPH_FONTS

public static final java.lang.String ATTR_USES_GRAPH_FONTS

 Some PDF files use fonts that are image-based -- instead of their encodings mapping
 character codes to standard Unicode characters, they map character codes to images
 of characters. This makes it possible for these kinds of fonts (typically referred to
 as Type3 fonts) to, for example, map the character code 32 to the image of a letter 'g'
 instead of the standard space character.

 PDFTextStream can derive the Unicode encoding of Type3 fonts in many cases, and will do
 so automatically if possible. Otherwise, content that uses
 a Type3 font for which no proper encoding can be derived will be skipped, and a
 document attribute with this key will be set and mapped to a
 Boolean object with a value of true.

	See Also:
	Constant Field Values

	

Constructor Detail

	
PDFTextStream

public PDFTextStream(java.io.InputStream is,
 java.lang.String pdfName)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given InputStream. Please note that because reading
 PDF content requires random access to any and all parts of the PDF data, an InputStream
 provided to a PDFTextStream constructor will be read in its entirety and
 written to a temporary file for processing. All temporary files are closed and deleted when
 the creating PDFTextStream instance is closed or (in the worst case)
 garbage-collected.

	Parameters:
	is - - an InputStream delivering the content of a PDF file
	pdfName - - the name of the PDF file (used mostly in logging / debugging)
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf data.

	
PDFTextStream

public PDFTextStream(java.io.File pdfFile)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given File.

	Parameters:
	pdfFile - - the PDF file to be read
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf file.

	
PDFTextStream

public PDFTextStream(java.lang.String pdfFilePath)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from a file located at the given path.

	Parameters:
	pdfFilePath - - the path to the PDF file to be read
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf file.

	
PDFTextStream

public PDFTextStream(java.io.InputStream is,
 java.lang.String pdfName,
 byte[] userPasswd,
 PDFTextStreamConfig config)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given InputStream. Please note that because reading
 PDF content requires random access to any and all parts of the PDF data, an InputStream
 provided to a PDFTextStream constructor will be read in its entirety and
 written to a temporary file for processing. All temporary files are closed and deleted when
 the creating PDFTextStream instance is closed or (in the worst case)
 garbage-collected.

	Parameters:
	is - - an InputStream delivering the content of a PDF file
	pdfName - - the name of the PDF file (used mostly in logging / debugging)
	userPasswd - - the password that should be used to decrypt the given pdf data -- defaults to an empty byte array.
	config - - a PDFTextStreamConfig object from which the new PDFTextStream instance will obtain
 various configuration settings.
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf data.

	
PDFTextStream

public PDFTextStream(java.io.InputStream is,
 java.lang.String pdfName,
 byte[] userPasswd)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given InputStream. Please note that because reading
 PDF content requires random access to any and all parts of the PDF data, an InputStream
 provided to a PDFTextStream constructor will be read in its entirety and
 written to a temporary file for processing. All temporary files are closed and deleted when
 the creating PDFTextStream instance is closed or (in the worst case)
 garbage-collected.

	Parameters:
	is - - an InputStream delivering the content of a PDF file
	pdfName - - the name of the PDF file (used mostly in logging / debugging)
	userPasswd - - the password that should be used to decrypt the given pdf data -- defaults to an empty byte array.
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf data.

	
PDFTextStream

public PDFTextStream(java.io.File pdfFile,
 byte[] userPasswd,
 PDFTextStreamConfig config)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given File.

	Parameters:
	pdfFile - - the PDF file to be read
	userPasswd - - the password that should be used to decrypt the given pdf file -- defaults to an empty byte array.
	config - - a PDFTextStreamConfig object from which the new PDFTextStream instance will obtain
 various configuration settings.
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf file.

	
PDFTextStream

public PDFTextStream(java.lang.String pdfFilePath,
 byte[] userPasswd,
 PDFTextStreamConfig config)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the file located at the given path.

	Parameters:
	pdfFilePath - - the path to the PDF file to be read
	userPasswd - - the password that should be used to decrypt the given pdf file -- defaults to an empty byte array.
	config - - a PDFTextStreamConfig object from which the new PDFTextStream instance will obtain
 various configuration settings.
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf file.

	
PDFTextStream

public PDFTextStream(java.io.File pdfFile,
 byte[] userPasswd)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given File.

	Parameters:
	pdfFile - - the PDF file to be read
	userPasswd - - the password that should be used to decrypt the given pdf file -- defaults to an empty byte array.
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf file.

	
PDFTextStream

public PDFTextStream(java.lang.String pdfFilePath,
 byte[] userPasswd)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given file at the given path.

	Parameters:
	pdfFilePath - - the path to the PDF file to be read
	userPasswd - - the password that should be used to decrypt the pdf file -- defaults to an empty byte array.
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf file.

	
PDFTextStream

public PDFTextStream(java.nio.ByteBuffer pdfData,
 java.lang.String pdfName,
 byte[] userPasswd,
 PDFTextStreamConfig config)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given ByteBuffer.

	Parameters:
	pdfData - - a ByteBuffer providing the entirety of a PDF file's data
	pdfName - - the name of the PDF whose data is provided by pdfData (this name is used
 only for logging and debugging purposes).
	userPasswd - - the password that should be used to decrypt the given PDF data -- defaults to an empty byte array.
	config - - a PDFTextStreamConfig object from which the new PDFTextStream instance will obtain
 various configuration settings.
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf data.

	
PDFTextStream

public PDFTextStream(java.nio.ByteBuffer pdfData,
 java.lang.String pdfName,
 byte[] userPasswd)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given ByteBuffer.

	Parameters:
	pdfData - - a ByteBuffer providing the entirety of a PDF file's data
	pdfName - - the name of the PDF whose data is provided by pdfData (this name is used
 only for logging and debugging purposes).
	userPasswd - - the password that should be used to decrypt the given PDF data -- defaults to an empty byte array.
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf data.

	
PDFTextStream

public PDFTextStream(java.nio.ByteBuffer pdfData,
 java.lang.String pdfName)
 throws java.io.IOException

Creates a new PDFTextStream that reads PDF content from the given ByteBuffer.

	Parameters:
	pdfData - - a ByteBuffer providing the entirety of a PDF file's data
	pdfName - - the name of the PDF whose data is provided by pdfData (this name is used
 only for logging and debugging purposes).
	Throws:
	java.io.IOException - - if an error occurs while writing initializing the new PDFTextStream
	EncryptedPDFException - - if an error occurs configuring the new PDFTextStream to decrypt
 the pdf data.

	

Method Detail

	
setConfig

public void setConfig(PDFTextStreamConfig config)

Sets the PDFTextStreamConfig instance that this PDFTextStream instance will
 use in various contexts to govern its operation.

 Note that certain configuration options are utilized only
 during PDFTextStream initialization (such as PDFTextStreamConfig.isMemoryMappingEnabled()).
 In order for non-default settings for those such options to take effect, a customized PDFTextStreamConfig
 object must either be set as the default configuration,
 or must be provided to any of the PDFTextStream constructors that accept a
 PDFTextStreamConfig object.

	
getConfig

public PDFTextStreamConfig getConfig()

Returns the PDFTextStreamConfig instance that this PDFTextStream instance is using
 to govern its operation.

	
read

public int read()
 throws java.io.IOException

	Overrides:
	read in class java.io.Reader
	Throws:
	java.io.IOException

	
read

public int read(char[] buf)
 throws java.io.IOException

	Overrides:
	read in class java.io.Reader
	Throws:
	java.io.IOException

	
read

public int read(char[] buf,
 int off,
 int len)
 throws java.io.IOException

	Specified by:
	read in class java.io.Reader
	Throws:
	java.io.IOException

	
pipe

public void pipe(OutputHandler handler)
 throws java.io.IOException

 Extracts all available text from this PDFTextStream instance, sending all PDF text events
 to the given OutputHandler. Using this method of text extraction will always be
 the fastest approach, as it eliminates any and all of the
 intermediate data copying that is necessary to support extraction
 via PDFTextStream's java.io.Reader implementation.

 If no special PDF text event handling is needed (i.e. you just want a straight text extract),
 then just pass a simple OutputTarget instance to this method.

 The results of using this extraction method and the java.io.Reader interface on the
 same PDFTextStream interface are undefined.

	Parameters:
	handler - - an OutputHandler instance.
	Throws:
	java.io.IOException - - if an error occurrs during the extraction process
	Since:
	v1.3
	See Also:
	OutputHandler,
OutputTarget

	
getPdfFileSize

public long getPdfFileSize()

Returns the size of the PDF file being read, in bytes.

	Since:
	v1.3

	
getPageCnt

public int getPageCnt()

Returns the number of pages in the PDF document.

	
getPage

public Page getPage(int n)
 throws java.io.IOException

Reads and returns a single page from the current PDF document. Page numbers are zero-indexed;
 they are not meant to correspond with any user-visible page number.

	Parameters:
	n - - the number of the page to retrieve.
	Throws:
	java.io.IOException - if an error occurs while preparing the Page for use
	Since:
	v1.3

	
getName

public java.lang.String getName()

Returns the name of the PDF that this stream is configured to read; this will be either the name of the PDF
 file that is being read, or the pdfName String that was provided if this instance was created
 with an InputStream constructor.

 Nearly all of the logging messages generated by the PDFTextStream library include the current PDFTextStream
 instance's name, making them easier to interpret in a multithreaded environment.

	
getPDFFile

public java.io.File getPDFFile()

Returns a reference to the file that this PDFTextStream instance is processing.
 This reference may be null if the PDFTextStream instance was not created using one of the
 java.io.File- or java.io.InputStream-based constructors.

	
finalize

public void finalize()

	Overrides:
	finalize in class java.lang.Object

	
close

public void close()
 throws java.io.IOException

	Specified by:
	close in interface java.io.Closeable
	Specified by:
	close in interface java.lang.AutoCloseable
	Specified by:
	close in class java.io.Reader
	Throws:
	java.io.IOException

	
getFormData

public Form getFormData()
 throws java.io.IOException

Loads the form data contained in the current document, and returns a Form object
 that represents that data. If the current PDF contains no forms, this function returns null.
 The Form instance that is returned by this function is guaranteed to be an
 AcroForm.

 This function MUST NOT be called after this PDFTextStream instance is closed.

	Throws:
	java.io.IOException - - if an error occurs loading the form data

	
getBookmarks

public Bookmark getBookmarks()
 throws java.io.IOException

If the current PDF document contains a bookmark tree, this function will return its root node.
 If the document contains no bookmarks, this function will return null.

 An exception will be thrown if this function is called after this PDFTextStream instance
 is closed.

	Throws:
	java.io.IOException - - if an error occurs reading the bookmark tree
	Since:
	v1.3.5
	See Also:
	Bookmark

	
getAnnotations

public java.util.List getAnnotations(int page)
 throws java.io.IOException

Returns a List of all annotations found on the page indicated by the given page number;
 each object will be an instance of a class that implements the Annotation interface.

 This function will never return null; if a page contains no annotations, an empty list will be returned.
 The returned list is guaranteed to offer efficient random access to its elements.

	Throws:
	java.io.IOException - - if an error occurs retrieving the annotation data
	Since:
	v1.3.5
	See Also:
	Annotation

	
getAllAnnotations

public java.util.List getAllAnnotations()
 throws java.io.IOException

Returns a list containing all of the annotations contained in the current PDF document.
 The returned list is guaranteed to offer efficient random access to its elements.

	Throws:
	java.io.IOException - - if an error occurs retrieving the annotation data
	Since:
	v1.3.5
	See Also:
	Annotation

	
getAllAnnotations

public int getAllAnnotations(java.util.List tgt)
 throws java.io.IOException

Adds to the given List all of the annotations contained in the current PDF document.

	Returns:
	the number of annotations added to the list
	Throws:
	java.io.IOException - - if an error occurs retrieving the annotation data
	Since:
	v1.3.5
	See Also:
	Annotation

	
getPDFVersion

public PDFVersion getPDFVersion()
 throws java.io.IOException

 Retrieves the PDFVersion instance that corresponds with the version of the PDF file
 specification to which current PDF file adheres. PDF specification version numbers
 correspond directly with particular versions of Adobe Acrobat:

 	v1.0 - Acrobat 1
	v1.1 - Acrobat 2
	v1.2 - Acrobat 3
	v1.3 - Acrobat 4
	v1.4 - Acrobat 5
	v1.5 - Acrobat 6
	v1.6 - Acrobat 7
	v1.7 - Acrobat 8

 PDF files are generally forward-compatible. For example, Acrobat 5 should be able to
 read any PDF file that adheres to versions 1.0, 1.1, 1.2, 1.3, or 1.4 of the PDF file spec, etc.

 Note that this method may not be called after the PDFTextStream instance is
 closed.

	Throws:
	java.io.IOException - - if an error occurs in determining what the PDF file's version is
	Since:
	v1.3

	
getEncryptionInfo

public EncryptionInfo getEncryptionInfo()

Returns an EncryptionInfo object, which provides access to some of the parameters used for the current
 PDF document's encryption.

 If the current PDF document is not encrypted, this method will return null.

	Since:
	v1.3

	
getXmlMetadata

public byte[] getXmlMetadata()
 throws java.io.IOException

 Returns the XML metadata available for the current PDF document. If no XML metadata is available
 in the current document, this method returns null.

 Note: This method must be called before the PDFTextStream instance is closed, and it should not
 be called while text is being actively read out of it. (Supporting such concurrency would require synchronization
 that would negatively impact performance.) Therefore, the best times to call this method are:

	just after creating the PDFTextStream instance but before reading text out of it
	after all text has been read out of the PDFTextStream instance, but before it is closed

 PDFTextStream does not control the content returned by this method -- it just provides access to the data that
 is already stored in a PDF document.
 The schema of the the returned XML data is defined by Adobe, and is called the Extensible Metadata Platform
 (XMP). More information about XMP can be found on
 Adobe's website

	Throws:
	java.io.IOException - - if this PDFTextStream instance has already been closed, or if an error occurs retrieving
 the XML metadata.
	Since:
	v1.2

	
getAttribute

public java.lang.Object getAttribute(java.lang.String attrName)
 throws java.io.IOException

This method is used to access all of the document-level metadata attributes that
 are set in a PDF document.

 All of the standard attribute names are specified in constants in this class, and are all prefixed
 with 'ATTR_'. A few notes should be kept in mind when accessing attribute values:
 	It is typical for only a subset of the possible attributes to be defined in a PDF document.
 Any attributes that are undefined will return a null value when their name is provided to this method.
	Many more attributes are used in the real world than are formally specified by the
 PDF specification. It is entirely up to the PDF generator what attributes are to be
 outputted for a particular document, so some documents may contain attributes
 whose names are not canonicalized in the 'ATTR_' constants in this class. You can use the
 getAttributeKeys() method to get a
 Set of the names of all available attributes.
	Most attribute values are Strings, but it is possible for attribute values to be Integers, Booleans, etc.
 The documentation associated with each attribute name constant in this class
 specifies what type may be expected when retrieving each particular attribute value. Any attributes
 specified as dates are returned from this method as String instances; these can be passed through
 parseDateString(String) to get a Date object.

 Note: the attributes available through this method are retrieved from the "classic" document /Info entry.
 The document metadata in an XML format (which typically contains the same set of metadata attributes
 that are available through this method) may be obtained via the
 getXmlMetadata() method.

	Parameters:
	attrName - - the name of the attribute to be retrieved
	Returns:
	the value of the attribute with the given name defined in the PDF document
 being read, or null if no attribute is available with the given name. The type of this object
 depends upon which attribute is being retrieved, and is noted
 in the documentation of the attribute name constants held by this class.
	Throws:
	java.io.IOException - - if an error occurs while retrieving the PDF document's metadata
	See Also:
	getXmlMetadata() for access to the XML-formatted document metadata

	
getAttributeKeys

public java.util.Set getAttributeKeys()
 throws java.io.IOException

Returns a Set containing the keys of all available document attributes.

	Throws:
	java.io.IOException - - if an error occurs while retrieving the PDF document's metadata

	
getAttributeMap

public java.util.Map getAttributeMap()
 throws java.io.IOException

Returns a Map containing a copy of all keys and values of all available document attributes.

	Throws:
	java.io.IOException - - if an error occurs while retrieving the PDF document's metadata

	
loadLicense

public static boolean loadLicense(java.lang.String licenseFilePath)

Loads and attempts to verify a PDFTextStream license file at the given path.

 PDFTextStream may also be configured to load a license file from a specific path by setting the
 system property or environment variable pdfts_license_path to that path.

	Parameters:
	licenseFilePath - - an absolute or relative file path
	Returns:
	true if a license file was found at the given path, and was successfully verified

	
loadLicense

public static boolean loadLicense(java.net.URL licenseLocation)

Loads and attempts to verify a PDFTextStream license file at the given URL.

	Parameters:
	licenseLocation - - a URL object
	Returns:
	true if a license file was found at the given path, and was successfully verified

	
isLicensed

public static boolean isLicensed()

Returns true if PDFTextStream has loaded and verified a non-evaluation license file that has not yet expired.

	
main

public static void main(java.lang.String[] args)

Main-method to allow extraction of text from a PDF file from the command line. Usage is simple:
 java PDFTextStream [pdfFile] [optional outputpath]

 pdfFile should be a path to the PDF file you wish to extract text from, outputpath
 should be a path to which you want the text extracted from the PDF to be written. If no
 outputpath is provided, then the text of the PDF file will be written to stdout.

	Overview
	Package
	Class
	Tree
	Deprecated
	Index
	Help

	Prev Class
	Next Class

	Frames
	No Frames

	All Classes

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

